一般的函數,可以用坐标表示出圖形,顯而易見。而有些數學,就像帶奇點的二階常微分方程。歐拉在解二階常微分方程上,研究出了很多反常的東西,尤其是這種帶奇點的。歐拉找到了一種形式,後來還找到了解法。歐拉認為初等代數都可以由多項式或不等式來表示,而數學問題是不是都是有初等代數問題可以表示的,還在疑惑當中。高斯突然想到,除了多項式以外,還要有包含除法的一種多項式,這就不僅僅是像多項式那麼簡單了。這個帶了除法,且裡面還帶有各種系數的多項式就是一種超幾何函數了。高斯也沿着歐拉的軌迹向下走的,是n趨近無窮時2f1(a,b;c;z)=Σa(n)b(n)c(n)znn!這樣的方程,其中的a(n)=a(a+1)……(a+n-1)這樣的階乘函數。在數學中,高斯超幾何函數或普通超幾何函數2f1(a,b;c;z)是一個用超幾何級數定義的函數,很多特殊函數都是它的特例或極限。波赫哈默爾對kur說:“這個函數中的z絕對值小于1。”kur說:“這個函數能幹什麼用?”波赫哈默爾說:“很多函數都可以用這個方程表示。”波赫哈默爾然後開始寫出以下表示,作為例子。ln(1+z)=z2f1(1,1;2;-z)(1-z)-a=2f1(a,1;1;z)arcsz=z2f1(12,12;32;z2)kur說:“我剛剛找到了b求無窮大的情形,名字叫合流超幾何函數。貝塞爾柱函數也可以由此函數表示出來。”kur寫出合流超幾何函數,形式為(a,c,z)=li2f1(a,b;c;b-1z)。波赫哈默爾滿意的點點頭。勒讓德函數,雅克比多項式,切比雪夫多項式,nbauer多項式都能用超幾何函數表示。所有具有三個正則奇點的二階線性常微分方程的解都可以用超幾何函數表示。其它特殊情形還包括krawtchouk多項式,ixner多項式,ixner–polczek多項式。超幾何函數有pfaff變換和euler變換,都是分式線性變換的例子,跟莫比烏斯變換有關系。除此以外還有廣義超幾何函數,這是超幾何函數推廣,就是這個式子關于p(n)的項變得很多了那麼超幾何函數顯而易見離初等代數不遠,但是能不能納入初等代數中?這在圖形的本質上,就變成了初等代數是否包含奇點?如果奇點太多,那指定不能看做是初等代數問題,但奇點在有限個甚至很少的時候,是不是就可以看做初等代數問題。:()數學心
請勿開啟浏覽器閱讀模式,否則将導緻章節内容缺失及無法閱讀下一章。
相鄰推薦:圈寵罪妃 馭獸天尊 葉淩天 [重生未來]外交風雲+番外 重生之庸臣+番外 我喜歡的作者不可能這麼無聊+番外 娘親偷聽我心聲後,轉頭嫁初戀 沒有你的日子裡我又寫了一百萬+番外 末日來襲,零元購萬億物資躺赢 惡國舅 怎麼才能包 養你! 乞丐王妃太難養 幫主夫人的野望 絕代之九妹玲珑 穿越之偷天換日 拒絕表白校花:轉身成為大亨 情陷檢察官 警告你别再當編劇! 穿越送驚喜,奶娃有神力 未來種植家+番外